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1FEMTO-ST institute
Rue Engel Gros, 90000 Belfort, France.

forename.name@univ-fcomte.fr
2 Institut Fresnel, CNRS, Aix-Marseille Université, EcoleCentrale Marseille,
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Abstract—In this study, we propose to address the issue
of image denoising by means of a GPU-based filter, able to
achieve high-speed processing by taking advantage of the parallel
computation capabilities of modern GPUs. Our approach is based
on the level sets theory first introduced by [1] in 1975 but little
implemented because of its high computation costs. What we
actually do is try to guess the best isoline shapes inside thenoisy
image. At first, our method involved the polyline modelling of
isolines; then we found an optimization heuristics which very
closely fits the capabilities of GPUs. So far, though our proposed
hybrid PI-PD filter has not achieved the best denoising levels, it
is nonetheless able to process a 512x512 image in about 11 ms.
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I. I NTRODUCTION

Denoising has been a much studied research issue since
electronic transmission was first used. The wide range of
applications that involve denoising makes it uneasy to propose
a universal filtering method. Among them, digital image
processing is a major field of interest as the number of digital
devices able to take pictures or make movies is growing fast
and shooting is rarely done in optimal conditions. Moreover,
the increase in pixel density of the CCD or CMOS sensors
used to measure light intensity leads to higher noise effects
and imposes high output flow rates to the various processing
algorithms.

In addition, it is difficult to quantify the quality of an image
processing algorithm, as visual perception is subject to high
variation from one human to another. So far, the advent of
GPUs has brought high speedups to a lot of algorithms, and
many researchers and developpers have successfully adressed
the issue of implementing existing algorithms on such devices.
For example in [2], [3] and [4], authors managed to design
quite fast median filters. Bilateral filtering has also been suc-
cessfully proposed in [5]. Still, most high quality algorithms,
like NL-means [6] or BM3D [7] make use of non-local
similarities and/or frequency domain transforms. However,
speedups achieved by their current GPU implementations,
though quite sigificant (as shown for example with NL-means
in [8]), do not come near those achieved by local methods
such as gaussian, median or neighborhood filters, as they
have not originally been designed against GPU architecture.
In order to fully benefit from the capabilities of GPUs, it is
important that the approach to designing algorithms be more
hardware-oriented, keeping in mind, from the very beginning,

the intrinsic constraints of the device which is actually going
to run those algorithms. Consequently, this often results in
unusual options and even apparently sub-optimal solutions,
but the considerable speed benefits obtained would possibly
make it at least a good compromise or even the only current
way to real-time high-definition image processing.

II. CONTRIBUTION

As early as 1975 [1], it was found that, under the conditions
mentioned in section V, an image can be decomposed into a
set of level lines. Accordingly, real-life images fulfill the above
conditions and since then, with the increase of computing
capabilities, researchers have succeded in implementing such
level-lines based algorithms as in [9] and [10]. A few years
ago, in [11], authors proposed an original method which signif-
icantly reduces speckle noise inside coherent images, using the
level lines in the image to constrain the minimization process.
Those level lines are actuallyiso-gray-levellines, which are
called isolines. In [11], isolines consist in neighborhoods of
polyline shapes determined by maximum likelihood optimiza-
tion. This method proved not only to bring good enhancement
but also to preserve edges between regions. Nevertheless, the
costs in computation time, though not prohibitive, did not
allow real-time image processing; as an example, the authors
of [11] managed to process an almost 2Mpixel image within
a minute on an old PIII-1GHz.

Our work started by designing a set of GPU implemen-
tations with various optimization heuristics, in order to find
out which tracks could be followed towards minimizing loss
in quality and preserve admissible execution times. Those
algorithms have been tested with reference images taken from
[12] for which various processing results have been published.
Some of the more interesting ones are listed and compared in
[13]. Statistical observations (to be detailed below) madeon
the output images produced by the method proposed in [11],
led us to propose a very fast and simple parallel denoising
method which gives good results in terms of average gray-
level error, but also avoids the blurring of edges.

On the basis of the BM3D timings listed in [7] and with
our own measurements, our proposed GPU-based filter runs
around 350 times faster and thus is able to process high
definition images at over 16fps. It also achieves good denoising
quality.
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III. PLAN

In the following, section IV briefly focuses on recent Nvidia
GPU characteristics. Section V will introduce the theory and
notations used to define isolines. Then, in section VI, we
will describe the two isoline based models that led to the
final hybrid model, while section VII details the parallel
implementation of the proposed algorithm. Finally, we present
our results in section VIII before drawing our conclusions and
outlining our future works in section IX.

IV. NV IDIA ’ S GPU ARCHITECTURE

GPUs are multi-core, multi-threaded processors, optimized
for highly parallel computation. Their design focuses on a
SIMT model (Single Instruction Multiple Threads) that de-
votes more transistors to data processing rather than data-
caching and flow control (see [14] for more details). For exam-
ple, a C2070 card features 6 GBytes global memory and a total
of 448 cores bundled in several Streaming Multiprocessors
(SM). An amount of shared memory, much faster than global
memory, is avalaible on each SM (up to 48 KB for a C20xx
card)

Writing efficient code for such architectures is not obvious,
as re-serialization must be avoided as much as possible. Thus,
code design requires one pays attention to a number of points,
among which:

• the CUDA model organizes threads by a) thread blocks
in which synchronization is possible, b) a grid of blocks
with no possible synchronization between them.

• there is no way to know how blocks are scheduled during
one single kernel execution.

• data must be kept in GPU memory, to reduce the overhead
generated by copying between CPU and GPU.

• the total amount of threads running the same computation
must be as large as possible.

• the number of execution branches inside one block should
be as small as possible.

• global memory accesses should be coalescent,i.e. mem-
ory accesses done by physically parallel threads (2 x 16
at a time) must be consecutive and contained in a 128
Bytes range.

• shared memory is organized in 32x32 bit-wide banks. To
avoid bank conflicts, each parallel thread (2 x 16 at a
time) must access a different bank.

All the above characteristics always make designing effi-
cient GPU code all the more constraining as non-suited code
would probably run even slower on GPU than on CPU.

V. I SOLINES

In the following, letI be the reference noiseless image (as-
suming we have one),I ′ the noisy acquired image corrupted by
Independent and Identically Distributed (IID) additive white
gaussian noise of zero mean value and standard deviationσ.
Let Î be the denoised image. Each pixel ofI ′ of coordinates
(i, j) has its own gray levelz(i, j).

As introduced above and since most common images are
continuous and contain few edges, they can be decomposed
into a set of constant gray level lines calledisolines. Then

our goal is to find, for each single pixel of a noisy image, the
isoline it belongs to. The generalized likelihood criterion (GL)
is used to select the best isoline among all the considered ones,
all of which must have the same number of pixels in order to
be compared.

A. Fixed-length isolines

For each pixel(i, j) of the corrupted image, we look for
the gray level of the isoline it belongs to, inside a rectangular
window ω centered on(i, j). Insideω, let Sn be the isoline
part which the center pixel belongs to.Sn is a set ofn pixel
positions(iq, jq) (q ∈ [0;n[).
The gray levelsz along Sn follow a gaussian probability
density function whose parametersµSn (mean value of isoline
part) andσ (standard deviation brought by gaussian noise ) are
unknown.
Let Sn be defined byω = Sn ∪ Sn.
For each pixel, the mean valuesµij of gray levelsz overSn

are unknown and supposed independant .
Let Z be the gray levels of pixels inω and{µij}Sn the mean
values of pixels inSn. The likelihood is given by:

P
[
Z|Sn, µSn , {µij}Sn , σ

]

When separating contributions from regionsSn and Sn, it
becomes:∏

(i,j)∈Sn

P [z(i, j)|µSn , σ].
∏

(i,j)∈Sn

P
[
z(i, j)| {µij}Sn , σ

]
(1)

The goal is then to estimate the value of the above expression,
in order to find the boundaries ofSn that maximize expression
(1).
Let us consider that, onSn, the valuesz(i, j) are the likelihood
estimationsµ̂ij for µij . The second term of expression (1)
becomes: ∏

(i,j)∈Sn

P
[
z(i, j)| {µ̂ij}Sn , σ

]
= 1 (2)

which leads to the generalized likelihood expression:
∏

(i,j)∈Sn

P [z(i, j)|µSn , σ] (3)

As we know the probability density function onSn, (3) can
then be developped as

∏

(i,j)∈Sn

1√
2πσ2

e−
(z(i,j)−µSn )2

2σ2 (4)

The log-likelihood is then given by:

−n

2
log (2π)− n

2
log
(
σ2
)
− n

2
(5)

inside which the vector of parameters(µSn , σ) is determined
by maximum likelihood estimation




µ̂Sn =
1

n

∑

(i,j)∈Sn

z(i, j)

σ̂2 =
1

n

∑

(i,j)∈Sn

(z(i, j)− µ̂Sn)
2

The selection of the best isoline is done by searching which
one maximizes the expression of equation (5).
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Fig. 1. Determination and lengthening of an isoline: The gray level z of
each pixel is seen as an elevation value.Sn is then pixel length isoline for
pixel of coordinates(i, j). The elongation ofSn by Sp (p pixel length) is
submitted to the GLRT condition (see eq. (8)).

B. Lengthenable isolines

Searching for larger isolines should lead to better filtering
as a larger number of pixels would be involved. However,
processing all possible isolines starting from each pixel would
be too costly in computing time, even in the case of a small
GPU-processed 512x512 pixel image. Therefore, we chose
to build large isolines inside an iterative process including a
mandatory validation stage between each lengthening iteration,
so as to reduce the number of pixel combinations to be
examined and keep the estimation of deviationσ within a
satisfactory range of values.

Let Sn be a previously selected isoline part andSp con-
nected toSn in such a way thatSp could be seen as an
addition toSn so as to define a possible valid isolineSn+p.
Figure 1 illustrates this situation with a very simple example
image. In this figure, the gray level of each pixel is used as its
corresponding height (z) in order to visualize isolines easily.
Some of the orthogonal isoline projections have been drawn
in dotted line in the(~i,~j) plane. Both labeled partsSp and
Sn are represented in the(~i,~j) plane and in the 3D associated
plot.

In order to decide whetherSn+p can be considered as
an actual isoline, we compare the log-likelihood of both
hypothesis below by using GLRT (Generalized Likelihood
Ratio Test):

First, assuming thatSn+p is an isoline, the gray levels of
its pixels share the same mean valueµn+p. According to (5),
its log-likelihood is

− (n+ p)

2
(log (2π) + 1)− (n+ p)

2
log
(
σ̂1

2
)

(6)

whereσ̂1 is the estimation of the standard deviation alongSn.
Second, consideringSn andSp as two separate isoline parts

connected together, the gray levels of their pixels have two
different mean valuesµn and µp. The log-likelihood is the
sum of both log-likelihoods, given by

− (n+ p)

2
(log (2π) + 1)− n

2
log
(
σ̂2

2
)
− p

2
log
(
σ̂2

2
)

(7)

whereσ̂2 is the estimation of the standard deviation alongSn

andSp.

The difference between (6) and (7) leads to the expression
of GLRT (Sn+p, Sn, Sp, Tmax):

Tmax − (n+ p).
[
log
(
σ̂1

2
)
− log

(
σ̂2

2
)]

(8)

The decision to validate lengthening fromSn to Sn+p

depends whetherGLRT (Sn+p, Sn, Sp, Tmax) is higher or
lower than0. ValueTmax is the GLRT threshold.

VI. I SOLINE MODELS

The most obvious model considers isolines as polylines.
Each isoline can then be curved by allowing a direction change
at the end of each segment; we shall call such isolinespoly-
isolines.

In order to keep the number of candidate isolines within
reasonable range, we chose to build them by combinating
segments described by simple pre-computed patterns. Each
pattern pl,d describes a segment of lengthl and direction
d. For one givenl value, all pl,d patterns are grouped into
a matrix denotedPl. Figure 8 shows an example of such a
pattern matrix forl = 5.

To fit the GPU-specific architecture, we define regularly
distributedD primary directions (D = 32 in our examples).

A. Poly-isolines with limited deviation angle (PI-LD)

At one stage we implemented an algorithm parsing the tree
of all possible polyline configurations, but the process proved
far too slow regarding our goal, even on GPU, because of
the amount of memory involved (and consequent memory
accesses) and because of the necessary reduction stage for
which GPU efficiency is not maximum. So we focused on a
variant inspired by [11] in which the selected direction of the
next segment depends on the whole of the previously built and
validated poly-isoline.

Let us consider a poly-isolineSn under construction, start-
ing from pixel (i, j) and made ofK validated segments
sk (k ∈ [1;K]) of length l, each of them having its own
direction dk. The coordinates of the ending pixel of each
segmentsk are denoted(ik, jk). Both of the following sums

Cx (Z(Sn)) =
∑

(i,j)∈Sn

z(i, j) (9)

and Cx2 (Z(Sn)) =
∑

(i,j)∈Sn

z(i, j)2 (10)

have been obtained during the previous lengthening steps.
Let us examine now how to decide wether to add a new

segment toSn or to stop the lenghtening process. The main
idea is to apply each patternpl,d to the ending pixel(ik, jk),
on the condition that its direction is contained within the
limits of maximum deviation∆dmax. Maximum deviation
∆dmax prevents poly-isolines from beeing of circular shape
(or backward-oriented) which would possibly generate supple-
mentary artefacts in the output image. Another of its benefits
is to reduce the number of combinations to be evaluated.

For each allowed pattern, GLRT is performed in order to
decide if the corresponding segment could likely be added to
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the end of the poly-isolineSn. If none is validated by GLRT,
the poly-isolineSn is stopped.

If at least one segment has been accepted by GLRT, the
one that leads to the maximum likelihood (ML) value of
the lengthened poly-isolineSn+l is selected and integrated
to Sn+l assK+1.

In order to avoid critical situations where the first selected
segment would not share the primary direction of the actual
poly-isoline, no selection is performed on the level of the
first segment;D poly-isolines are kept and submitted to the
lengthening process. To ensure isotropy, each of them shares
the direction of one patternpl,d (d ∈ [0;D]).

Eventually, the poly-isoline with the maximum likelihood
value is selected among the longest ones.

Figure 2 illustrates one stage of the lengthening process with
the example of a two-segment poly-isoline at the beginning of
stage (l = 5 and∆dmax = 2).

(a) Isoline with two validated
segmentss1 ands2.

(b) First evaluated segment,
corresponding to patternp5,0.

(c) Second evaluated segment,
corresponding to patternp5,1.

(d) Third evaluated segment,
corresponding to patternp5,2.

(e) Fourth evaluated segment,
corresponding to patternp5,3.

(f) Fifth evaluated segment,
corresponding to patternp5,4.

Fig. 2. Example of lengthening process starting with a two-segment poly-
isoline (l = 5, ∆dmax = 2). The initial situation is shown in 2a, while 2b to
2f represent the successive candidate segments. The direction index of the last
validated segment isd2 = 2 (2a). It implies that direction indexes allowed for
the third segment range fromd2−∆dmax = 0 to d2+∆dmax = 4 (2b to
2f). The lengthening of the poly-isoline is accepted if at least one segment has
a positive GLRT. If there are several, the one which minimizes the standard
deviation of the whole poly-isoline is selected.

B. Poly-isolines with precomputed directions (PI-PD)

Though much faster, the PI-LD-based filter may be con-
sidered a bit weak compared tostate-of-the-artfilters like
BM3D family algorithms [7]. Furthermore, we saw that this
way of building poly-isolines requires the alternate use of
two different types of validation at each lengthening stage:
GLRT and maximum likelihood minimization. In order to be
performed, each of them generates numerous branches during

kernel execution, which does not fit GPU architecture well
and leads to execution times that we hoped would be more
impressive.

Within the PI-LD model, at each pixel(i, j), as no selection
is done at the first stage,D poly-isolines are computed and
kept as candidate though, obviously, only one follows the
actual isoline at(i, j). So, if we assume we can achieve a
robust determination of the direction at any given pixel of
this isoline, it becomes unnecessary to perform the selection
at each lenghtening step. Thus, at each pixel(i, j), only
the first segment has to be determined in order to obtain
the local direction of the isoline. This leads to an important
reduction of the work complexity: the above PI-LD model
needs to evaluateD. (2.∆dmax + 1)

K−1 segments at each
pixel position, while onlyD.K evaluations are needed in
the second case. For example, with a maximum ofK = 5
segments and a maximum deviation of∆dmax = 2, the PI-
LD needs to evaluate up to 20000 segments per pixel where
only 160 should be enough.

On the basis of these observations, we propose a new model
that we shall call PI-PD, that completely separates the vali-
dation stages performed in the PI-LD model implementation
mentioned above:

A first computation stage selects the best first segments1
starting at each pixel(i, j) of the input image. Its direction
index d1(i, j) is then stored in a reference matrix denoted
IΘ; sumsCx andCx2 along s1(i, j) are also computed and
stored in a dedicated matrixIΣ. It can be noticed that this
selection method ofs1 segments is a degraded version of PI-
LD constrained byK = 1.

A second stage manages the now independant lengthening
process. For one given state of a poly-isoline where the last
added segment has beensK , the pattern whose direction index
is given byd = IΘ(iK , jK) defines the only segment to be
evaluated. Both corresponding sumsCx andCx2 are read from
matrix IΣ and used in GLRT evaluation. The last point is to
prevent poly-isolines from turning back.

Figure 3 details this process, starting from the same initial
state as in figure 2 with the noticeable difference that no
deviation limit is needed.

Thus, as introduced above, work complexity is considerably
reduced, as each pattern is only applied once at one given
pixel (i, j), and associated values are computed only once;
they are re-used every time one poly-isoline’s segment endsat
pixel (i, j). Also, this fits GPU constraints better, as it avoids
multiple branches during kernel execution. It remains that,
the building of poly-isolines is done without global likelihood
optimization.

Eventually, the model has been improved by adding to it
the ability to thicken poly-isolines from one pixel up to three
which allows to achieve higher PSNR values by increasing the
number of pixels of poly-isolines in addition to the lengthening
process. This may apply to large images which do not contain
small relevant details, as it may blur small significant details
or objects present in the noisy image. Still, this feature makes
PI-PD more versatile than our reference BM3D, which has
prohibitive computation times when processing large images
(over 5 minutes for a 4096x4096 pixel image) and thus should
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require a slicing stage prior to processing them, causing some
overhead.

(a) Poly-isoline
with two validated
segments.

(b) Next direction is read from element
(i2, j2) of IΘ.

(c) Patternpl,d3 is then applied at
(i2, j2) and GLRT is performed.
Both sums needed to perform GLRT
are read from element(i2, j2) of IΣ.

(d) If accepted by GLRT,
segments3 is added to
poly-isoline.

Fig. 3. Example of PI-PD lengthening process starting with atwo-segment
poly-isoline (l = 5). The initial situation is represented in 3a, while 3a to 3d
represent the successive processing steps. The end pixel ofthe last validated
segment is(i2, j2) (3a). Reference matricesIΘ and IΣ provide the values
needed to select the pattern to be applied on(i2, j2) (3b and 3c). GLRT is
performed to validated lengthening or not. This process goes on until one
submitted segment does not comply with GLRT.

C. Hybrid PI-PD

As the determination of each segment’s direction only
involves a few pixels, the PI-PD model may not be robust
enough in regions where the surface associated withZ has a
low local slope value regarding power of noiseσ2. We shall
call those regions Low Slope Regions (LSR). Figure 4 shows
this lack of robustness with an example of two drawings of
additive white gaussian noise applied on the same reference
image (Figure 6). Within this image, we focused on a small
11x11 pixel window containing two LSR with one sharp edge
between them.

Figures 4d and 4e show that the directions computed by
PI-PD are identical from one drawing to the other near the
edge (lines 5-7), while they vary in LSR (lines 1-4, 8-11).

Within such regions, our speed goals forbid us to compute
isoline directions with the PI-LD model, more robust but far
too slow. Instead we propose a fast solution which implies
designing an edge detector whose principle is to re-use the
segment patterns defined in section VI and to combine them
by pairs in order to detect any possible LSR around the center
pixel. If a LSR is detected, the output gray-level value is
the average value computed on the current square window,
otherwise, the PI-PD output value is used.

In order to further simplify computation, only the patterns
that do not share any pixel are used. These patterns have a
direction which is a multiple of45◦.

(a) Reference image

(b) Image corrupted by random
drawingn◦1

(c) Image corrupted by random
drawingn◦2

(d) Isoline directions for ran-
dom drawingn◦1

(e) Isoline directions for ran-
dom drawingn◦2

Fig. 4. Zoom on a small square window of the airplane image. 4areproduce
the zoom on the window, taken from the reference image of Figure 6. 4b, 4c
and 4a and are 3D views where each bar represents a pixel whosegray-level
corresponds to the height of the bar. Figures 4d and 4e are 2D top views
of the window. The chosen window shows an edge between two regions of
low slope. The images 4b and 4c are corrupted with two different random
drawings of the same additive white gaussian noise (AWGN) ofpower σ2

and mean value0. 4d and 4e show, for each pixel of the window, the direction
of the isoline found by PI-PD. In regions of low slope (the tworegions at
the top and the bottom), the determination of the direction is not robust. But
near the edge, directions do not vary from one drawing to another.

Each base direction(Θi) and its opposite(Θi+π) [2π] de-
fine a line that separates the square window in two regions (top
and and bottom regions, denoted T and B). We assume that
segments on the limit belong to the T region which includes
pixels of orientation fromΘi to Θi+π. This region comprises
three more segments of directions(Θi +

π
4 ), (Θi +

2π
4 ) and

(Θi+
3π
4 ). The other region (B) only includes three segments

of directions(Θi +
5π
4 ), (Θi +

6π
4 ) and (Θi +

7π
4 ).

Figure 5 illustrates this organization forΘi = Θ4 = 45◦.
Each bar represents a pixel in the detector’s window. Pixels
with null height are not involved in the GLRT. Pixels repre-
sented by higher bars define the T region and those represented
by shorter bars define the B region.

For eachΘi, one GLRT is performed in order to decide
whether the two regions T and B defined above are likely to
be seen as a single region or as two different ones, separated
by an edge as shown in figure 5. The center pixel is located
on the edge. Equations (6), (7) and (8) lead to a similar GLRT
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Fig. 5. Edge detector. 3D view representing an example square 11x11 pixel
window (l = 5) used in the edge detector forΘ4 = 45◦ around a center pixel
colored in black. Each pixel is represented by a bar. Bars of height value 0 are
for pixels that are not involved in the detector. Top region is defined by five
pattern segments and includes the center pixel. Bottomp region only includes
three pattern segments. The different height values are meant to distinguish
between each of the three different sets of pixels and their role.

expression:

T 2max − (8.l + 1).
[
log
(
σ̂3

2
)
− log

(
σ̂4

2
)]

(11)

whereσ3 is the standard deviation considering that the two
regions are likely to define a single one andσ4 the standard
deviation if an edge is more likely to separate the two
regions.T 2max is the decision threshold. With equation (11),
a negative result leads to an edge detection, oriented towards
directionΘi. When GLRT is known for eachΘi, we apply
the following hybridation policy:

a) more than one negative GLRT: the PI-PD output value
is used.

b) only one negative GLRT: the center pixel is likely to be
on a well-defined edge, and only the region it belongs to
is considered. The average value of its pixel gray levels
is then used.

c) no negative GLRT: the window around the center pixel
is likely to be a LSR. The average value on the whole
square window is used (11x11 pixels in the example of
Figure 5).

(a) Reference noiseless air-
plane image

(b) Location of the example
window in the reference image.

Fig. 6. Location of the example window inside the reference image. Figure
6a shows the whole reference image and 6b zooms on the part where the
example 11x11 pixel window is.

It must be noticed that point b) has been introduced in order
to achieve smoother transitions between regions to which PI-
PD is applied and those in which the plain average value
is used. Figure 7 shows an example of such a classification
achieved by the edge detector. The detector has been applied

on the top noisy airplane image with a GLRT threshold value
T 2max = 2. Black pixels represent pixel classified ason an
edge, while white ones are those which belong to LSR.

(a) Noisy airplane image (b) Pixel classification per-
formed by the edge detector.

Fig. 7. Pixel classification inside the noisy image. Figure 7a shows the noisy
input image and 7b reproduces the output classification of pixels, as a black
and white image, obtained with threshold valueT2max = 2. Black pixels
are supposed to be near an edge, while white pixels belong to Low Slope
Regions.

VII. H YBRID PI-PD FILTER IMPLEMENTATION: DETAILS

All implementation details that will be given here are
relative to the proposed PI-PD models and Nvidiac© GPU
devices.

A. Segment patterns

The first kernel to be run iskernel_genPaths() which
generates matrixPl. Its elements(∆i; ∆j) are the relative
coordinates of the pixels which define segment patternspl,d.
The dimensions of matrixPl areD rows× l columns. To fit
GPU architecture as closely as possible, we choseD = 32
patterns. Each segmentsk of a poly-isoline can then be seen
as a patternpl,d applied on the starting pixel(i, j) of this
segment, denotedpl,d(i, j).

The example in figure 8 shows the first quarter ofP5 and
the corresponding eight discrete segment patterns in the first
quadrant. The three remaining quarters of the matrix are easily
deduced by applying successive rotations of angleπ

2 to the
above elements.

B. Generation of reference matricesIΣ and IΘ

In order to generate both matrices, a GPU kernel
kernel_precomp() computes, in parallel for each pixel
(i, j):

• the directionδ of the most likely segments1 = pl,δ(i, j)
among theD possible ones. This value is stored in matrix
IΘ at position(i, j).

• valuesCx(s1) andCx2(s1) defined in equations (9) and
(10). This vector of values is stored in matrixIΣ at
position(i, j).

In order to reduce processing time, the input image is first
copied into texture memory (see algorithm 1 for initializations
and memory transfer details), thus taking advantage of the 2D
optimized caching mechanism.

This kernel follows theone thread per pixelrule. Conse-
quently, each value ofPl has to be accessed by every thread
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P5 =




(0, 1) (0, 2) (0, 3) (0, 4) (0, 5)

(0, 1) (0, 2) (−1, 3) (−1, 4) (−1, 5)

(0, 1) (−1, 2) (−1, 3) (−2, 4) (−2, 5)

(−1, 1) (−1, 2) (−2, 3) (−3, 4) (−3, 5)

(−1, 1) (−2, 2) (−3, 3) (−4, 4) (−5, 5)

(−1, 1) (−2, 1) (−3, 2) (−4, 3) (−5, 3)

(−1, 0) (−2, 1) (−3, 1) (−4, 2) (−5, 2)

(−1, 0) (−2, 0) (−3, 1) (−4, 1) (−5, 1)

. . . . . . . . . . . . . . .




Fig. 8. Top: example segment patternsp5,d for d ∈ [0; 7]; the black pixel
represents the center pixel(i, j), which does not belong to the pattern. The
gray ones define the actual pattern segments. Bottom: the first 8 lines of
corresponding matrixP5 whose elements are the positions of segment pixels
with respect to the center pixel.

of a block. That led us to load it from texture memory first,
then copy it into all shared memory blocks. This has proved
to be the fastest scheme.

Algorithm 2 summarizes the computations achieved by
kernel_precomp(). Vector(Cx, Cx2) stores the values of
Cx(s1) andCx2(s1) associated with the current tested pattern.
Vector (Cx−best, Cx2−best) stores the values ofCx(s1) and
Cx2(s1) associated with the best previously tested pattern.

In the same manner,σ and σbest are deviation values for
current and best tested patterns.

The selection of the best pattern is driven by the value of
the standard deviation of candidate isolines. Lines 2 and 3
compute both sums for the first pattern to be evaluated. Line
4 computes its standard deviation. Then, lines 5 to 14 loop on
each pattern and keep values associated with the best pattern
found. These values are eventually stored in matricesIΘ and
IΣ on lines 16 and 17.

Algorithm 1: Initializations in GPU memory

1: l← step size;
2: D ← number of primary directions;
3: In ← noisy image;
4: Intex ← In; /* copy to texture mem. */
5: Pl ← kernel genPaths ; /* pattern matrix */
6: Pltex ← Pl; /* copy to texture mem. */
7: Tmax ← GLRT threshold (lengthening);
8: T 2max ← GLRT threshold (edge detection);

C. PI-PD lengthening process:kernel_PIPD()

This parallel kernel is run in order to obtain the image of
the isolines. It is detailed in algorithm 3, (see section VI-B for
process description).

Algorithm 2: generation of reference matrices, kernel
kernel_precomp()

1: foreach pixel (i, j) do /* in parallel */

2: Cx−best ←
∑

(y,x)∈pl,0(i,j)

Intex(i+ y, j + x) ;

3: Cx2−best ←
∑

(y,x)∈pl,0(i,j)

I2ntex(i+ y, j + x) ;

4: σbest ← standard deviation alongpl,0(i, j) ;
/* loop on each pattern */

5: foreach d ∈ [1;D − 1] do
6: Cx ←

∑

(y,x)∈pl,d(i,j)

Intex(i + y, j + x);

7: Cx2 ←
∑

(y,x)∈pl,d(i,j)

I2ntex(i + y, j + x);

8: σ ← standard deviation alongpl,d(i, j);
9: if σd < σbest then /* keep the best */

10: Cx−best ← Cx ;
11: Cx2−best ← Cx2 ;
12: Θbest ← d ;
13: end
14: end
15: IΣ(i, j)← [Cx−best, Cx2−best] ; /* stores */
16: IΘ(i, j)← Θbest ; /* in matrices */
17: end

Lines from 2 to 11 perform allocations for the first lengthen-
ing to evaluate. More precisely,(i1, j1) represents the starting
pixel of the current segment;(i2, j2) is both its ending pixel
and the starting pixel of the next segment;d1 andd2 are their
directions, read from precomputed matrixIΘ. C1

x and C1
x2

are the gray-level sums along the current poly-isoline;C2
x and

C2
x2 are the gray-level sums of the candidate segment. The

current poly-isoline ends at(i1, j1) and is made ofl1 pixels
(already accepted segments); its standard deviation isσ1. The
loop extending from lines 12 to 21 performs the allocations
needed to proceed one segment forward, as long as GLRT is
true. If the lengthening has been accepted, the length of the
poly-isoline is updated in line 13, and the same is done with
Cx andCx2 which are read from precomputed matrixIΣ (see
equations (9) and (10) for definition). Finally, using direction
valued2, it translates the coordinates(i1, j1) to the end of the
newly elongated poly-isoline, and(i2, j2) to the end of the
next segment to be tested. As soon as the GLRT condition
becomes false, line 23 eventually produces the output value
of the denoised image at pixel(i, j), that is, the average gray-
level value along the poly-isoline.

D. Hybrid PI-PD : kernel_edge_detector()

As introduced in section VI-C, the aim of kernel
kernel_edge_detector() is to divide pixels into two
classes according to their belonging to a LSR or not. Algo-
rithm 4 explains the detailled procedure. Lines 2 to 6 initialize
values of the direction index (Θ), the number of edges detected
(edgeCount), the gray-level sum along the pixels that defines
the H half-plane (sumEdge) and the number of pixels that
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Algorithm 3: PI-PD lengthening process
kernel_PIPD()

1: foreach pixel (i, j) do /* in parallel */
2: (C1

x, C
1
x2)← z(i, j) ; /* starting pixel */

3: (i1, j1)← (i, j) ; /* first segment */
4: (C1

x, C
1
x2)← IΣ(i1, j1) ; /* read matrix */

5: d1 ← IΘ(i, j) ; /* read matrix */
6: l1 ← l ; /* isoline length */
7: σ1 ← (C1

x2/l1 − C1
x)/l1;

8: (i2, j2)← end of first segment;
9: (C2

x, C
2
x2)← IΣ(i2, j2) ; /* 2nd segment */

10: d2 ← IΘ(i2, j2);
11: σ2 ← (C2

x2/l − C2
x)/l ;

12: while GLRT (σ1, σ2, l1, l) < Tmax do
13: l1 ← l1 + l ; /* lengthening */
14: (C1

x, C
1
x2)← (C1

x, C
1
x2) + (C2

x, C
2
x2);

15: σ1 ← (C1
x2/l1 − C1

x)/l1 ; /* update */
16: (i1, j1)← (i2, j2) ; /* step forward */
17: d1 ← d2;
18: (i2, j2)← end of next segment;

/* next segment */
(C2

x, C
2
x2)← IΣ(i2, j2);

19: d2 ← IΘ(i2, j2);
20: σ2 ← (C2

s2/l− C2
s )/l ;

21: end
22: end
23: Î(i, j)← C1

x/l1 ; /* isoline value */

defines both half-planes H and L (nH , nL). Then the loop
starting at line 7 performs the GLRT for every considered
direction indexΘ. ValuessumH and sumL are vectors of
two parametersx andy, parameterx being the sum of gray-
level values andy the sum of square gray-level values. Value
sumH is computed along the pixels of half-plane H and is
obtained by loop at lines 10 to 14; ValuesumL is computed
along the pixels of half-plane L and is obtained by loop at
lines 15 to 19. ValueIntex(i, j) refers to the gray-level value at
pixel (i,j) previously stored in texture memory. Eventually, the
isoline level value is output at line 27, 30 or 33 depending on
the situation (see VI-C for details about the decision process).

VIII. R ESULTS

The proposed hybrid PI-PD model has been evaluated with
the 512x512 pixel sample images used by [12] in order to
make relevant comparisons with other filtering techniques.As
we aim to address image processing in very noisy conditions
(as in [15]), we focused on the noisiest versions, degraded by
AWGN of standard deviationσ = 25.

Quality measurements of the denoised images in com-
parison with reference images have been obtained by the
evaluation of:

a) Peak Signal to Noise Ratio (PSNR) that quantifies
the mean square error between denoised and reference

Algorithm 4: edge detector and pixel classifier
kernel_edge_detector()

1: foreach pixel (i, j) do /* in parallel */
2: Θ← 0; /* direction index */
3: edgeCount← 0;
4: sumEdge← 0;
5: nH ← 5l + 1;
6: nL← 3l;
7: while (Θ < 32) do
8: sumH ← (Intex(i, j), I

2
ntex(i, j));

9: sumL← (0, 0);
10: for (α = Θ to α = Θ+ 16 by step4) do
11: sPat←

∑

(y,x)∈Pl,α(i,j)

Intex(i+ y, j + x);

12: sPat2←
∑

(y,x)∈Pl,α(i,j)

I2ntex(i + y, j + x);

13: sumH ← sumH + (sPat, sPat2);
14: end
15: for (α = Θ+ 20 to α = Θ+ 28 by step4) do
16: sPat←

∑

(y,x)∈Pl,α(i,j)

Intex(i+ y, j + x);

17: sPat2←
∑

(y,x)∈Pl,α(i,j)

I2ntex(i + y, j + x);

18: sumL← sumL+ (sPat, sPat2);
19: end
20: if (GLRT (sumH, nH, sumL, nL)> T 2max)

then
21: edgeCount← edgeCount+ 1;
22: sumEdge← sumH.x;
23: end
24: Θ← Θ+ 4;
25: end

/* outputs isoline value */
26: if (edgeCount == 0) then

27: Î(i, j)← (sumH.x+ sumL.x)

nH + nL
; /* LSR */

28: end
29: if (edgeCount == 1) then

30: Î(i, j)← (sumEdge)

nH
31: end
32: if (edgeCount > 1) then
33: Î(i, j)← ̂IPIPD(i, j); /* PI-PD */
34: end
35: end

images:MSE(I, Î). We used the following expression:

PSNR = 10.log10

(
max(Î)

MSE(I, Î)

)

PSNR values are given in dB and highest values mean
best PSNR.

b) The Mean Structure Similarity Index (MSSIM, defined
in [16]), which quantifies local similarities between
denoised and reference images inside a sliding window.
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MSSIM values belong to an interval[0; 1]; the closer to
1 the better.

PSNR is widely used to measure image quality but can be
misleading when used by itself: as demonstrated in [16], the
processing of noisy images can bring a high PSNR value but
very bad visual quality. This is avoided by the use of the
MSSIM index along with the PSNR value: when both of them
show high values, the overall quality can be considered high.

Result figure 9 provides the PSNR and MSSIM of every
image, denoised with three different filters: average 5x5,
hybrid PI-PD and BM3D. Thenoisycolumn shows the values
for each image before denoising. BM3D ( [7]) is taken as
a reference in terms of denoising quality, while the average
filter is taken as a reference in terms of processing time. The
window size of 5x5 pixels has been choosen to achieve PSNR
values similar to those obtained by PI-PD.

BM3D code is run on a quad-core Xeon E31245 at 3.3GHz
and 8GByte RAM under linux kernel 3.2 (64bits), while PI-
PD as well as average filter codes is run on a Nvidia C2070
GPU hosted by a PC running linux kernel 2.6.18 (64bits). The
average filter used is an efficient parallel GPU implementation
that we developped. It is a generic and versatile separable
convolution kernel that outputs more than 700MPixels per
second in the 5x5 averaging configuration.

Hybrid PI-PD measurements were performed withn = 25,
l = 5, Tmax = 1 and T 2max = 2. BM3D measurements
have been performed with the freely available BM3D software
proposed in [7].

The hybrid PI-PD model proves much faster than BM3D
and better than the average 5x5 filter. Processing the thirteen
images of the database reveals that hybrid PI-PD brings an
average improvement of 1.5dB (PSNR) and 7.2% (MSSIM)
against the average filter at the cost of 35 times its compu-
tational duration. Against hybrid PI-PD, BM3D achieves an
average improvement of 2.4dB and 4.6% at the cost of 350
times as much duration. Actually, the 5x5 average filter takes
around0.35 msto process an image while hybrid PI-PD needs
around11 msand BM3D around4.3 s.

It must be noticed that experimental optimization show that
the vector of parameter valuesTmax = 1 and T 2max = 2
is optimal for 11 of the 13 images of the database. Better
results are obtained with a slightly different value ofT 2max

for peppersor zelda whose denoised images can obtain a
MSSIM index of 0.90. Most of the computational time of
hybrid PI-PD is spent by the edge detector, which clearly does
not fit GPU requirements to achieve good performance. For
information, the simple PI-PD model runs in less than 4 ms
in the same conditions.

Figure 10 shows denoised images produced by hybrid PI-PD
model compared with the output of the BM3D and the average
5x5 filters. The figure illustrates the merits and drawbacks of
each model: edges are well preserved by hybrid PI-PD, but a
staircaseeffect is visible, a well-known artefact inherent to this
type of neighborhood filters. Our recent GPU-implementation
of the regression method proposed in [17] brings a mean
improvement of 1dB at the cost of 0.4 ms.

Image Noisy average hybrid BM3D
5x5 PI-PD

airplane 19.49dB 26.39dB 28.46dB 30.88dB
0.58 0.84 0.88 0.93

barbara 20.04dB 22.76dB 24.26dB 30.60dB
0.70 0.76 0.83 0.94

boat 20.33dB 25.58dB 27.54dB 30.02dB
0.66 0.81 0.87 0.91

couple 20.28dB 25.25dB 27.33dB 29.77dB
0.69 0.79 0.87 0.91

elaine 19.85dB 28.71dB 28.94dB 30.60dB
0.59 0.86 0.87 0.91

fingerprint 20.34dB 23.33dB 26.07dB 27.93dB
0.93 0.87 0.95 0.96

goldhill 19.59dB 26.47dB 27.43dB 29.22dB
0.67 0.82 0.87 0.88

lena 19.92dB 27.99dB 29.14dB 31.80dB
0.60 0.84 0.88 0.93

man 20.38dB 24.74dB 26.74dB 28.14dB
0.71 0.80 0.86 0.87

mandrill 19.34dB 20.34dB 22.38dB 24.75dB
0.77 0.69 0.83 0.88

peppers 19.53dB 27.30dB 28.68dB 30.87dB
0.61 0.86 0.87 0.92

stream 20.35dB 23.23dB 25.35dB 26.34dB
0.80 0.78 0.87 0.88

zelda 17.71dB 23.13dB 27.71dB 30.49dB
0.58 0.87 0.88 0.93

Fig. 9. Comparison between hybrid PI-PD, average and BM3D filters. PI-PD
parameter values:n = 25, l = 5, Tmax = 1 andT2max = 2. The noisy
column correspond to the noisy input images, before denoising.
Timings: average filter in around 0.35 ms hybrid PI-PD in around 11.0 ms
and BM3D in around 4.3 s

(a) Noisy imageσ = 25 (b) Average 5x5 filter, in
0.35 ms

(c) PI-PD hybrid filter, n =
25, l = 5, Tmax = 1,
T2max = 2, in 11 ms

(d) BM3D filter, in 4.3s

Fig. 10. Comparison of 512x512 images denoised from noisy airplane image
(10a) with a PI-PD filter (10b), PI-PD hybrid filter (10c) and BM3D filter
(10d). Only zoomed parts of images are shown in order to ensure better
viewing.

IX. CONCLUSION, FUTURE WORK

From the start, our approach, unlike quite a few others, has
been to base this study on the conception and characteristics
of the targeted hardware (Nvidia Graphic cards).

So as to get high execution speeds, we chose, for example,
to find a method that remains local (concentrating on the
immediate neighborhood of the center pixel), but still provides
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very significant benefits, using our technique of progressive
lengthening.

Nevertheless, our method has proved slightly sub-optimal
and lacking robustness inflat regions (see above, Low Slope
Regions), even if the actual visual effect may be considered
quite satisfactory.

As a first step to address the above drawbacks, we have
devised a hybrid method that detects and applies distinct
processing to LSR regions (see above). Processing speeds
remain fast, and much higher than the BM3D implementation
taken as quality reference. This is very promising, and opens
the perspective of real-time high definition image sequence
processing at 25 fps, provided we improve the edge detector,
which currently limits the HD frame rate at 16fps (High
Definition: 1920x1080 pixels).

To further improve the quality of output images, we also im-
plemented a efficient parallel implementation of the staircase
effect reduction technique presented in [17]. With this method,
searching for best improvement factors leads to different
parameters values for each image processed, which prompts
to studying some way of overriding such parameters.

Our study so far has been based on additive noise; we are
currently working on transposing criteria to various multiplica-
tive noise types. We also extended the process to color images
with very interesting visual results to be confirmed by the
experimental measurement currently in progress.
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